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Abstract

The process of dynamic crack growth in a nominally elastic material under conditions of plane
strain or plane stress is considered. Of particular concern is the influence of the transient nature of

the process on the stress field in the immediate vicinity of the crack tip during nonsteady growth.

Asymptotically, the crack tip stress field is square root singular at the crack tip, with the angular
variation of the singular field depending weakly on the instantaneous crack tip speed and with the

instantaneous stress intensity factor being a scalar multiplier of the singular field. However, for a

material particle at a small distance from the moving crack, the local stress field depends not only
on instantaneous values of crack speed and stress intensity factor, but also on the past history of
these time-dependent quantities. A representation of the crack tip field is obtained in the form of

an expansion about the crack tip in powers of radial coordinate, with the coefficients depending on

the time rates of change of crack tip speed and stress intensity factor. This representation is used
to interpret some experimental observations, with the conclusion that the higher order expansion

provides an accurate description of crack tip fields under fairly severe transient conditions. In
addition, some estimates are made of the practical limits of using a stress intensity factor field

alone to characterize the local fields.
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Introduction

One of the cornerstone concepts of linear elastic fracture mechanics is the role of the stress intensity

factor as a crack tip field characterizing parameter. Irwin (1957) observed that the elastic stress

field near the tip of a crack which opens symmetrically (mode I opening) has the now familiar form

-~i = KI - (0) + 0O(1) as r-+

in a polar coordinate system centered at the crack tip. The dependence on radial coordinate r

is explicit, and the angular variation functions Eij can be expressed in terms of trigonometric

functions of angle 0. The leading term in an asymptotic expansion of the crack tip field in powers

of r is thus universal. The only feature which varies with loading conditions and geometrical

configuration of the cracked body is the scalar multiplier, the elastic stress intensity factor Ki. For

strictly two-dimensional deformations, the above field can be valid only within a region near the

crack tip of extent small compared to the crack length, distance to the nearest boundary, or any

other characteristic dimension of the body. On the other hand, the assumption of a two dimensional

elastic field cannot be valid right up to the crack tip, even under plane strain conditions. Within

some small region near the tip, the two dimensional elastic field must give way to a region of inelastic

deformation. Nonetheless, if this inelastic zone is completely surrounded by a stress intensity factor

field, then it is commonly assumed that the stress intensity factor can be used to characterize the

fracture process and that fracture will begin when the value of stress intensity factor has been

increased to a material specific value, the fracture toughness of the material.

When the stress intensity factor idea is applied to the case of a through-the-thickness crack in

a plate, the restrictions become somewhat more severe if the process is to be characterized in terms

of a stress intensity factor associated with a two dimensional state of plane stress. In addition to

the limitation noted above concerning overall body dimensions and crack length, such points must

also be far enough from the crack edge to be outside the zone of influence of three dimensional

effects around the crack edge. Typically, the plane stress assumption is valid only for r > h/2

where h is the plate thickness (Rosakis and Ravi-Chandar (1986), Yang and Freund (1986)).

If the crack growth process in a plate is dynamic, so that the inertia of the material comes into

play, there is yet another factor which complicates the application of the stress intensity factor idea

under conditions of plane stress. This factor is due to the wave character of the mechanical fields
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in the body during crack growth. To illustrate this effect, consider a crack growing dynamically at

a constant speed. Suppose that at equally spaced intervals of time, wave signals are emitted from

the crack tip. A set of such waves is illustrated schematically in Figure 1 where the circles represent

wavefronts of the signals. The centers of the circles are located at equally spaced points along the

crack growth direction. Consider a particular field point P that is near to the crack tip in some

sense. It is then clear from the diagram that this point is far behind the wavefronts emitted earliest,

compared to the distance from P to the crack tip. On the other hand, the point is outside of the

wavefronts emitted most recently. If information measured at this point, as well as at similar points

around the crack edge, is used to infer something about the value of the stress intensity factor,

then the wave nature of the fields should be considered. In some sense, local measurements sense

the recent history of the stress intensity factor. If the stress intensity factor is essentially constant

during this time, then the effect is obviously negligible. However, if the stress intensity factor is

varying rapidly in time, then its value may change significantly during the time of influence at P

and the existence of a region of practically significant size around the crack edge in which the field is

characterized by the instantaneous value of stress intensity factor is uncertain. The possibility that

the extent of the stress intensity factor during dynamic crack growth under transient conditions is

more limited than a steady state analysis would indicate was first suggested by the analysis of Ma

and Freund (1986).

The purpose of the present study is two-fold. First, a higher order asymptotic expansion of

crack tip fields under plane stress conditions is obtained for transient crack growth. In the present

context, transient crack growth is understood to include processes in which both the crack tip

speed and the dynamic stress intensity factor are differentiable functions of time. The analytical

result is used to interpret some experimental observations, with the conclusion that the higher order

expansion provides a good representation of crack tip fields under fairly severe transient conditions.

Then, some estimates are made of the practical limits of using a stress intensity factor field alone

to characterize the local fields.
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Governing Equations for Plane Stress Elastodynamic Crack Growth

Consider a homogeneous and isotropic linear elastic solid occupying a two-dimensional region in the

X1, z2-plane. The outer boundary is subjected to traction and/or displacement boundary conditions

of a type to ensure uniqueness of solutions. Suppose that a planar crack grows through the body

with nonuniform crack speed v(t). Within the framework of the theory of plane stress, the two-

dimensional displacement vector u is governed by the equation (Freund, 1990)

cV(V. u)-cV A V A u = i, (1)

where V is the two-dimensional gradient operator and a superposed dot indicates differentiation

with respect to time. In terms of Young's modulus E and Poisson's ratio v, the longitudinal and

shear wave speeds for plane stress are

c,= [E/(1- 2)p] 1/ 2  and c, = [E/2(l +)p] 1/2

respectively, where p is the material mass density.

Any displacement u which is derived from longitudinal and shear wave potentials O(x, x', t)

and O(x', x', t) according to

u = V+ V AO (2)

with

c2V 2 4 =o, c V 2 4 -,o (3)

satisfies (1). Conversely, any solution of (1) has the representation (2). In plane stress 4' has a

single nonzero component denoted here by 4.

Suppose that a translating coordinate system (x 1 ,X 2 ) is introduced with its origin at the

moving crack tip and oriented with the xi-axis aligned with the direction of crack growth. The

displacement potentials can then be viewed as functions of position in the moving coordinate system,

as well as time. The new functions are denoted by 4 and 4I, that is, §(xI,X 2 ,t) = O(x',zxt) and

'P(xI, x 2 , t) = 4'(XzI, x', t). Under the transformation of coordinates, the partial differential equation

(3) governing the longitudinal displacement potential becomes

.92 4 V~ 2) a0 b i) O" 2 v 1c~ 2 . c1 1 &qT,2 4
+ + -+2- =0. (4)
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The shear wave potential T (xl,x 2, t) satisfies the same equation with ct replaced by c8 . It is also

noted for future reference that the first scalar invariant of stress for the assumed state of plane

stress is determined by the displacement potential $ according to

all + 0'22 =2p(cl c2)V X (5)

where V2 is the Laplacian operator in the translating coordinate system.

Asymptotic Crack Tip Field for Transient Crack Growth
To derive an asymptotic expansion for the stress components as r - - 0, a standard

device is employed whereby the region around the crack tip is expanded so it fills the entire field

of observation (Freund, 1990). To this end, rescaled coordinates 77', = xl/ are introduced, with

c > 0 being a small parameter and a = 1,2. As E - 0, all points in the Xl,x 2 -plane except those

near the crack tip are mapped beyond of the range of observation in the rql, 772-plane.

It is assumed that 4 has an expansion in powers of E of the form

00 Z-"+3
¢(Xl,X 2,t) = N(E1,ET 2 t)= C 2 4€.,(1 72,t), (6)

M=0

where ¢o represents the main contribution to the asymptotic solution, 'b represents the first order

correction, and so on. The first term of this series (m = 0) corresponds to the expected square root

singular contribution proportional to r-1/2 in the asymptotic near tip stress field.

The assumed asymptotic form (6) is substituted into the governing equation (4) and the

coefficient of each power of E is set equal to zero to obtain a system of coupled differential equations

for ¢m. The first several such equations are

2 9 + 92 -s 0 (7a)

O¢1 a21

2 9,t +9.tI (7b)

02P 02D2 2v 1/ 2 0 }¢0
a + 2- 2 191 -  (7c)

2 ' 3 +a23 2v112 0 } 1I2,72+ -C2 at a, (d)
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2 24 +L4 20 / 2 8$g V ' + I a2to
, ? J ± a , (7e)

1 202 5 +2-t5 2v /2 a V11 2 , 3 + 1 024 1
I- c- t } 8t2 ' (7f)

and so on, where al = (1 - v2/c )1/2.

For any value of m, the governing equation has the general form

a0"b" +2 _ 2v=12 8 V 1/2N }m-2 1 02 m4)
ITC,,+ T 1 t 5+ 2 ot(

for m = 0, 1, 2,..., where lk - 0 if k < 0. The shear wave potential 1P is also assumed to be

expressible in terms of a similar expansion for c, with coefficients 1 ,m satisfying an equation similar

to (8) with c1 replaced by c,.

It is noted that, for the special case of steady state crack growth, i' = 0 and 8,,,/0t = 0 for

m = 0, 1,2 ... In such a case, the equations (7) are not coupled and each reduces to Laplace's

equation in the coordinates 771,a1t?2. The solution for this case is discussed by Dally (1987) who

attributes the original results to unpublished work of G. R. Irwin. The corresponding functions

0,,, are independent of time in the moving coordinate system. In the general transient case, on the

other hand, the only uncoupled equations are those for m = 0 and m = 1. Indeed, as will be seen,

4DO and tj have the same spatial structure in both the transient and the steady state cases. This

is not so, however, for tm if m > 1.

An expansion for the first stress invariant in the scaled coordinate system 7, 72 can be obtained

from (5) and (6) as

22  
2 ~ (9)11, + 02 2 = 2p(c - -- •

In view of (8), this expression can be rewritten as

all_+__2 __
-0 V2 92.tm 2v1/ 2  1/2 8tm-2 1 a 2(10)42 2=0C 87712 c2 9t a7 2 Ot(ECvi I  + . (10)

- [- t1 e± 0t

This relation does not involve derivatives of qlm with respect to 72.
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The Case of Transient Crack Growth at Constant Velocity

In this section, a special case of transient crack growth is considered, namely, crack propagation

with constant crack tip speed v but with a time-dependent stress intensity factor. Although the

crack tip speed is constant in this case, the potential functions -0 and It are still time-dependent,

in general, and the right side of (8) is not identically zero as it is for steady state crack growth.

Crack growth phenomena having this behavior have been observed by Ravi-Chandar and Knauss

(1987) and Rosakis et al. (1983,1984), among others. A mathematical model having this feature

is provided by the plane stress problem of a crack suddenly beginning to grow symmetrically at

constant rate from zero initial length in a uniform body subjected to a remote tensile field. The

solution of this problem was first obtained by Broberg (1960). As is evident from the analytic

solution of the Broberg problem, which is considered in detail in Freund (1990), the stress intensity

factor is a function of time. In fact, based on dimensional considerations, the stress intensity factor

varies in proportion to time t raised to the power one-half. The Broberg solution will be examined

further in a subsequent section.

The equations (7) may be solved sequentially, and the first steps for m = 0 and m = 1 have

been presented by Freund (1990). For these cases, the solutions for symmetric modes of crack

growth are

$m(rl,,A,t)m=-A,(t)r, 2 cos 1 (m + 3)0,, m = 0,1 (11)

I"2+3
where r, - (12 + ai ) and 01 = tan- 1 (ati72 /q1). Note that $m(rl,0i,t) = c 2 m(71,7 2 ,t) by

definition. For constant velocity crack growth, (rl,09) are translating polar coordinates distorted

from conventional polar coordinates by an amount determined by the crack speed v. Because v is

constant, the coordinates (ri, 01) are time-independent. Time enters the solution (11) only through

the coefficients Am(t). By definition, the coefficient Ao(t) is related to the stress intensity factor

(Freund, 1990) by

Ao(t) = - 4Kd(t) 1 + a2

where K d(t) is the time-dependent dynamic stress intensity factor and A(v) = 4ala, - (1 + 02) 2 .

The functions $2 and $,3 are obtained by solving (8) for m = 2 and 3. For these values of m,

(8) reduces to

2d(2' O4 m 2v a2 4'm-2 (12)
a1 +9 +9 2 ataq,
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The result of substituting (11) into the right side of (12) and converting to the distorted polar

coordinates (rj, 01) is

_ 2$ 1 1 02$ra 4$ + r - + 4P = D'[Am-2r m-l)/2 cos (m- 1)08, (13)
1r r1 On (9921

where D' [Ak] denotes the operator

D'[Ak] (k+3)v1/2 d vu/2Ak
a2c2 dt

for k = 0,1,2,3,..., which reduces to

D' [Ak] (k + 3)v dAk
a2= C dt

for constant velocity crack growth. In the development to follow, this operator is understood to

yield D'[Ak] = 0 for k < 0.

Relation (13) holds only for m = 0,1,2,3. The general solution for these values of m and

symmetric mode I crack growth is

, = r, a Am(t) cos 1(m + 3)O + D'[A. 2(t)cos (m - 1) , (14

2m + 2 2( 1(4

which also applies only for m = 0, 1,2,3. Note that (11) is a special case of (14) which corresponds

to m = 0, 1. For m = 4,5 the procedure is continued, in which case (8) becomes

02., 0'Fm 2v 0 2 'Dm_ 2  1 0 2' ,_4 (15)
a' j + -D2 t-T + Ot 2

If the potential 4,m is again viewed as a function of the scaled polar coordinates (rt, 01), and

if (14) is substituted into the right side of (15), then C(r,0 1,t) must satisfy the partial differential

equation

V2$m(ri, t) D'[A- 2(t)] + D [A. 4 (t)] + Am-4 COS i(M- 1

(M - 1)2 2~]cs~m-10

D2[A,-4(t)] (m - 5) rm-l)/
2  (16)

+2:(m -1) 2o 5o

where

1 d2 Ak
D2 [A4I = D' [D'[Ak]], i k a dt2
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for k = 0, 1, . Note that (16) holds only for integers m = 1,...,5. The general solution of (16)

for mode I crack growth is

m(r, 01, t) = r(+ 3 )/l {Am(t) cos 1 (m + 3)01

+ 2(m+ 1) DI[A.- 2(t)] + D2 [A,..-4 (t)] Am-4 cos (M- 1)01 (17)
1(M -102 +2

+D2 [A,.-(t)] Co}m-20
8(m- 1)2  2 )0J

for m = 1,...,5. It is clear that (11) and (14) are special cases of (17) for m = 0, 1 and m = 0, 1,2,3,

respectively.

A six term expansion for the stress invariant as a function of position around the crack tip can

be obtained by substituting (17) into (10). If the terms in the series are written out explicitly, then

this expansion is

a11 + 0'22 3it2  -1/2 2&
1

- 22(c - c) -- Aor cos 5.o + -Ai
C2 I /2

+ { [!2A2 + (1 - *) D[Ao]] cos O0 + 2D[A0]cos 0} r/

4c-''2  2, 2 2r., 2+
+ { [ A1+ +-) D'[A,]] cos+-1o r1

+ {[ 2 A + (1 - ) D'[A,] + -1 - D [AoI ) + (i - ] c os 0 (18)

U12  1 h2 2  
&22 .. 2 3+ D'-~ D[A21 + - ~1 D D[Ao] + a~o Cos 18 + ~- D2 [A0] cos 5 01

2 { A532~ + (1 - -~2 D1 [A3! + -!D (A,] + (I - -) A]Cos 201

+ [Do[A3 1 + (1- D) D2 [A,] + r2A 1 ,.r + o(r,

where D1 [Ak] was introdticed in (13) and D2[Ak] was introduced in (16). Note that the spatial

variation of the terms in this expansion with coefficients Ak are identical to those obtained from an

asymptotic analysis under the assumption.of steady state crack growth. Of course, in the general

transient case, the quantities represented by Ak are functions of time. Also, D1 [Ak], D2 [Ak], and

Ak are normalized deri,:atives with respect to time of the coefficients Ak. For example, for constant
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velocity v but time dependent stress intensity factor KJ(t), the quantity DI[Ao] can be reduced to

the first time derivative of the stress intensity factor,

4v(+a') dK (19)

10a= jia-c-VrA(v) dt
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Comparison with Constant Velocity Experiments

In this section, some experimental results on rapid crack propagation are interpreted on the basis

of the foregoing asymptotic analysis. The main purpose is to determine if the crack tip fields

actually observed in the vicinity of dynamically growing fractures can be represented by the fields

anticipated in the higher order asymptotic analysis. The comparison is restricted to the case in

which transient crack growth is indeed observed to occur with constant crack speed, following

fracture initiation.

A full field optical technique, called the Coherent Gradient Sensing (CGS) method, has been

developed by Tippur et al. (1989) for measuring crack tip deformation fields. This method can

be used in either transmission mode for transparent materials or in reflection mode for opaque

materials. Like the well-known method of caustics, the CGS method is based on the detection of

gradients in the optical path caused by deformation of a nominally two dimensional sample. In

transmission mode, these gradients arise from changes in refractive index of the material due to

nonuniform strain in the sample, while in reflection mode they arise from changes in slope of the

sample surface due to nonuniform out-of-plane strain. In either case, if the deformation can be

viewed as being consistent with the theory of plane stress in the region in which measurements

are made, then the experimental information is related to the in-plane gradient of the first stress

invariant, which has components 0(aIi + a22)/dX, "r a = 1,2.

If the terms in (18) are differentiated with respect to xl and then rearranged in order to

isolate the term that would represent the stress intensity factor if the field were indeed a square

root singular stress intensity factor field, it is found that
~ Oa 1 [+02) r cos 1, .cos 0 1

Vfi 1o 2 1(61 + 022) = K 1 (t) + r, (t) + 2(t)1 c 1 j
+(v) cos 2/ 0t1 + 1 Cos + c(

+cos ,L 4(t)cos + +5 t cos20).
2 2

+ 3/tr5 2 co Cos +' 0 r12

1Cos 0

where F(v) = (1 + a2)(a - a2)/A(v) and 31,. .. , 37 are functions of time and crack tip velocity

determined by the various coefficients in (18). As a matter of convenience, the left side of (20)

will be denoted by Yd(ri, 01,t) in subsequent discussion. The important observation is that if, at
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any particular instant of time, the near tip stress field is accurately characterized by a square root

singular stress intensity factor field over some region, then Yd(ri,01,t) is independent of r, and 01

thro,,hout that region. Furthermore, the value of Y/ at such a time is precisely the value of the

corresponding dynamic stress intensity factor KI(t). On the other hand, if there is no region in

the vicinity of the crack tip throughout which Yd is uniform, then it must be concluded that the

local crack tip field is not accurately represented by a stress intensity factor field. The quantity Y/

in (20) can be measured using the CGS method, and the question to be considered is whether or

not the right side of this continued equality can describe the measured angular variation.

A selection of CGS interferograms obtained during dynamic crack propagation in impact

loaded, three-point-bend specimens of PMMA are shown in Figure 2. These patterns were recorded

by means of a rotating mirror high speed camera and a pulsed laser light source; the details of the

experimental setup are described by Krishnaswamy et al (1990). In this case, the material is trans-

parent and the method is used in transmission mode. The fringes in Figure 2 correspond to level

curves of the quantity D(aii + 0a22)/19x l .

In the three-point-bend specimen of thickness h, the crack initiates abruptly from a blunted

notch tup under the action of the stress wave loading provided by the impacting tip and, thereafter,

it propagates at a nearly constant speed. Figure 3 shows the analysis of an interferogram at a time

of t = 20ps after crack growth initiation. The crack speed is approximately 300m/s. In this

early time after fracture initiation, it is expected that transient effects due to the abrupt initiation

event and associated stress wave propagation are still important. The figure shows the variation

of Y/ versus normalized distance rj/h as given in (20) along the radial lines corresponding to

01 = 0, 30' , 45*, 1200 emanating from the moving crack tip. It appears from the figure that there is

no region (within the framework of plane stress) over which the measured Yf is constant. Indeed,

the observed values scatter by as much as several hundred percent about a mean value. Thus, there

appears to be no region in which a square root singular stress intensity factor field dominates the

near tip field.

Figure 3 also includes the results of applying a least squares procedure to fit the expression

on the right side of (20) to the experimentally measured values of Yd as obtained from the inter-

ferogram. The procedure is based on the values of Yd measured at several points along each radial
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line. Because Y / and ri,91 are known at each such point, (20) provides a linear equation for values

of 1k, k = 1..., 7 and KI at each point. A best fit solution of the over-determined system of linear

equations for 1k is then determined by a standard least squares procedure. Each curve found in

this way (shown as dotted in Figure 3) corresponds to the transient expansion on the right side of

(20) and each curve apparently captures the essential features of the data for all observations made

outside of the zone of three dimensional effects, namely, for r, > h/2 (Rosakis and Ravi-Chandar

(1986)). It is emphasized that the curves all correspond to the same values of Pk, so that the fit is

consistent in both the radial and angular directions.

When the CGS method is applied in reflection mode, the fringes obtained correspond to level

curves of 4u 3/1z 1 where U3 is the out-of-plane displacement of the surface of the specimen. For

deformation corresponding to a state of plane stress,

u3 vh o9
- (Eaxj11 + a22).Ol 2E z

In light of this relationship, the expression equivalent to (20) is

2_____-_____31 _ c0u 3 _ ~ cos, .cos 0, 1
2V2-;r~r"' Ou, K d(t) + r, M(t Co ,0 + 62(t)Coj,0

F(v)vh cos 20, cos 0, a x, cos 3o cos 101

3/2 l o 0 5)~ 1] (21+t63(t)r 1 r [ (t)cos + 65.(t)+ cosb6 2 C 1)
COS-2 1 L CS2,Cs21

3COS 01 + 0 rr 2

where 6 k, k = 1,... , 7 are functions of crack tip speed and time. Again, for convenience, the

left side of (21) is described by Z'(ri,0,t). Just as in the case of Y/ above, the quantity ZI is

essentially constant in any region in which the fields are represented accurately by a square root

singular stress intensity factor field.

To examine the role of higher order terms in the near field asymptotic expansion in the in-

terpretation of data obtained by means of light reflected from the sample surface, a second series

of dynamic fracture tests was conducted. In this series, the specimens were again impact loaded

three-point-bend specimens of PMMA. However, in this case, a reflective aluminum coating was

deposited on the front planar surface of the specimen by vacuum deposition. The experimental

arrangement for reflection mode described by Krishnaswamy et al. (1990) was used to observe the
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crack tip fields. In order to provide a full-field, visual demonstration of the agreement between

the six term fit and the experimental data, a reconstructed fringe pattern based on a least squares

fit of the data is shown in Figure 4 (discrete points on the right side) superimposed on the actual

interferogram (contrast fringes on the left side). In addition, the broken lines added to the left side

of the figure represent the fringe pattern reconstructed from the full, higher order least squares fit.

The higher order fringe pattern clearly matches the observed fringes very well, except close to the

crack tip where the large influence of three dimensional effects precludes a direct comparison. For

purposes of comparison, a synthetic fringe pattern generated from only the term in the crack tip

field expansion associated with the stress intensity factor K' is also shown as the solid lines in the

right half of the figure. This pattern differs significantly from the actual pattern, suggesting that

the higher order terms in (18) can have a significant influence on the crack tip stress field over the

region in which fringes are commonly observed.

The discrete points in Figure 5 show the variation of Z'(ri,01,t) with radial distance rt/h

from the crack tip for several radial lines emanating from the crack tip. As in the corresponding

case of transmission mode observations, the quantity Zd is not constant over any significant part

of the region of observation, as would be expected if the deformation field there would be a square

root singular stress intensity factor field. On the other hand, the discrete points representing

measured values closely follow the curves obtained from a least squares fit to the six term asymptotic

expansion, at least for rj/h > 0.5

To further illustrate the transient nature of the crack tip fields, the time histories of the stress

intensity factor K(t) and of the coefficients /3k(t) inferred from the data during a representative

dynamic fracture experiment are shown in Figure 6. Each of the quantities is normalized by its mean

value for the entire test. Even though the crack speed was constant during the entire observation,

the figure clearly shows the transient nature of the crack growth process. For the first 50As after

initiation of crack growth from a stationary blunted notch, there is significant fluctuation in the

values of /3k(t), k = 2,..., 7. The transient nature of a crack tip field of this kind during the early

stages of crack growth was anticipated in the analytical results of Ma and Freund (1986).
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The Case of Transient Crack Growth at Nonuniform Velocity

The foregoing analysis of near tip fields during transient crack growth is restricted to the class of

situations in which the crack speed is constant. As such, the analysis represents a full development

of some ideas introduced in Freund (1990). The case of transient crack growth at nonuniform speed

can be treated in much the same way but, as might be expected, the details are more complicated.

In this section, a three term expansion for the first stress invariant is obtained.

As in the case of constant speed crack growth, (7a) and (7b) have solutions

Do(rj,,,,t) = Ao(t)r/ 2 cos
(22)

41 (ri,0 1, t) = AI(t)rl cos 20,.

Up to this point, the expressions appear to be the same as for constant speed growth. However,

they differ in the fundamental respect that the coordinates r1, 01 are now functions of time. From

their definitions, it is the crack speed that determines the degree of distortion of these coordinates

from the physical polar coordinates, and the crack speed is now a function of time.

For m = 2, the governing equation (8) takes the form

2 02 =D 2_ _r 4+0& j7d7 2  2jvfv~t) ['(23)

If a transformation t(, polar coordinates (rj,#1 ) is made and (22), is used, (23) becomes

S/2cos O(D'[Ao]+ 2Bsin2 10) (24)

where

D1 [Ao] -/ [4Vr 1±_+ K,](t

__________ d,2ijA v
B(t) =vf2-7v(t)2 (1 K ot) dvM

C1 a.UAMdt

The general solution of (24) for mode I crack growth is

$ (r, ,,t) = r-/ 2 [ D[A0]cos 10, + B ( cos 10- cos 3 16, + A2 cos 101 (25)

where it is clear that the last term is the homogeneous solution of the equation.
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A three term asymptotic expansion in powers of r, for the first stress invariant can be obtained

by substituting the expressions for 4o(r:, 01, t), 41(r, 01, t) and $ 2(r1 ,#O, t) into (10), with the result

that

all + a22 3v 2  0cos0 2v 2
- o cos -" + -2-A,

2p(cl c.) 4C1  r/ l

15YI 19 Drl~ 1  V\ V2  3o,
+{15Aa cos '1+ LO 1 - v  cos 0 + cos(261 1 (26)

21- 53cos 01- -2 ( )cos 3 lo

51 c 2 2  2c 2

-- vcos 50,+-.22cos 7 1, r 1, + o(r2).

It is readily verified that B = 0 for constant speed crack growth, and that this expression reduces

to the case of (18) of equivalent order. It is noted that crack tip acceleration enters the expansion

only through the coefficients D1 [Ao] a.ad B.

Explicit Expansion for the Broberg Solution

In order to illustrate the role of the higher order terms in the near tip expansion in a more explicit

way, the solution of a particular boundary value problem concerned with elastodynamic crack

growth is considered. This is the plane strain problem of a crack growing symmetrically from zero

initial length at constant rate under uniform remote tensile stress 0r,. The plane of deformation

is the x ,x -plane and the crack lies in the interval -vt < x' < vt, x' = 0, where v is the constant

speed of either crack tip. This is the problem first analyzed by Broberg (1960).

An expression for the first stress invariant directly ahead of the crack tips can be obtained

from equations (6.3.43) and (6.3.50) of Freund (1990). On the plane x' = 0,

0'1 1 + a 22 = -2a(h - c,'\f) / h (27)

-2c~vc) 2\ )J (h )

where h = 1/v, I(v/cs) is a known function of v, and f() - (c; 2 - 2 2)/( 2 - c 2 )1 / 2 (h + E)3 / 2.

Focusing on the crack tip moving in the positive x'-direction, if this expression is expanded in

powers of x, = x' - vt near x, = 0 then

alI +022 = W(v)- + [/2t+ f(h) + +(V ) (28)
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where

(1+ a2)(ck2 - ak2)
W(v)= 2(1 +

Vd(t) = ".I(V/c-)A(V)ao/--.
v 2 a a V7C0 V1ti

If the expansion (28) is then compared with the general expansion (18) and terms of like

powers in distance from the crack tip are equated, then explicit equations for the coefficients in the

expansion are obtained as

A, 0

3v 2 \ 15 v 2  W(v)Kd(t) [1 f' (h)h (29)
D'fAol - - 2')+ A2 =2 - 7

8c2) A 2 - c 2jt(c /c - 1)vt/2 + f(h) j

From its definition, D1 [Ao] can be expressed in terms of the stress intensity factor. Consequently,

the coefficients of the two terms in (18) corresponding to the particular and homogeneous solutions

of the differential equation for m = 3 in the asymptotic expansion (18) are

D'[Ao] = g ,(v) vt(

V2 KI~t)(30)i v' K 1(t)
A_= 92(V)

1 /1 iv t v2-

where the two functions of crack tip speed gl(v) and g2(v) are shown in Figure 7 for Poisson's ratio

vi = 1/3.

In view of the fact that the coefficients in (30) are proportional to t1/ 2, it is evident that

the third term in the near tip asymptotic expansion of the first stress invariant can be very large

during the early stages of crack growth, possibly dominating the square root singular term under

certain conditions. This result clearly illustrates the strong bearing that transients may have on

the question of Kf-dominance of the near tip field, even if the crack tip speed is constant.
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Concluding remarks

Motivated by the wave propagation characteristics of the fields in the vicinity of a growing crack tip,

an approximation of the near tip field in the form of an asymptotic expansion has been introduced.

The leading term in the expansion of the local stress field is the familiar stress intensity factor

contribution, that is, it is square root singular in the radial distance from the crack tip and its

coefficient is proportional to the instantaneous value of stress intensity factor. The higher order

terms, on the other hand, take into account the recent past history of stress intensity factor and

crack motion, in order to reflect the transient nature of the local field. These terms involve the

time derivatives of stress intensity factor K(t) and crack speed v(t). The expansion is based on

an assumption that the fields are indeed two dimensional right up to the crack tip.

For the case of constant crack speed but time dependent stress intensity factor, the expansion

is given explicitly to six terms. The coefficients are evaluated on the basis of experiments involving

dynamic crack growth in PMMA plates under the assumed conditions. The measurements of the

crack tip field were obtained by means of the full field Conjugate Gradient Sensing method. The

experimental results, in the form of a gradient of the first invariant of stress in the direction of crack

growth, appear to be well described by the expansion. More precisely, over the region near the

crack tip where the elastodynamic field is expected to be essentially a two dimensional plane stress

field, both the observed radial and angular variation of the data are consistent with the higher

order expansion.

The good agreement between observation and the higher order expansion also has a discon-

certing aspect. As noted above, the experimental results and the expansion are in close agreement

over a region of significant size around the crack tip. However, during the earlier phase of crack

propagation, nowhere within this region of agreement is the field dominated by a stress intensity

factor field. In other words, even though the specimen is large enough so that reflected waves do

not influence the local fields, the transient nature of the stress field during the early phase of crack

growth prevents a complete stress intensity factor field from becoming established outside the near

tip three dimensional zone. This feature erodes the value of the stress intensity factor concept

in characterizing the fracture resistance of the material. From the discussion of the observations

in connection with Figures 3 and 5, it is clear that a unique plane stress intensity factor can be
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identified in both the data and the model at each instant of time. Furthermore, Figure 6 shows

that the inferred value of stress intensity factor is nearly constant during growth, even though no

fully developed stress intensity factor field is apparent. However, this stress intensity factor is not

strictly relevant in the spirit of fracture toughness testing. The dilemma is particularly acute for the

case of plane stress where a region very close to the crack edge is dominated by three dimensional

effects, and therefore measurements in this region cannot be used in any two dimensional analysis

of fields. The restriction is much less severe for the case of plane strain crack growth.

A re-examination of the experimental results of Ravi-Chandar and Knauss (1987) suggests that

this may be an illustration of the transient phenomena discussed in this paper. In this investigation

the optical method of caustics in transmission mode was used to measure the stress intensity factor

history of a crack which is loaded dynamically by the direct application of a pressure pulse on

its faces. In each case, uniform crack face pressure was imposed. Its magnitude 00 increased

linearly in tinme from nominally zero initial value to a predetermined final value, with the duration

of the increase always being about T = 25pus. After initiation, the crack propagated with nearly

constant speed v. A series of experiments corresponding to different final crack face pressure

values, and therefore different rates of loading up to fracture initiation, were reported. Figure 8

shows a comparison of stress intensity factor time histories obtained analytically and measured

experimentally by caustics. The lower curve in Figure 8 demonstrates good agreement between

experiment and theory both during the dynamic loading stage of the stationary crack and during

crack growth. On the other hand, the upper curve in Figure 8, which corresponds to a higher rate

of loading, shows excellent agreement of theory and measurements only up to the point of crack

initiation. After the crack started propagating, the experimentally obtained stress intensity factor

K" overestimates the theoretical result by almost 50%. It should be noted that the delay time r

for the crack to initiate after the application of the loading pulse is a factor of three greater in the

experiment corresponding to the lower curve in Figure 8 than in the experiment corresponding to

the upper curve. The resulting crack tip speed in the former figure is also about half that in the

latter. It is thus expected that transient higher order effects of the type demonstrated above become

more pronounced in the case of the upper curve. If it is recalled that the analysis of the optical

caustics patterns is based on the assumption that the near crack tip field is represented solely by
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the r- 1/ 2 singular term of the asymptotic expansion (K'-dominance) then the suspicion arises that

caustics may not be measuring the correct values of Kti after crack initiation. This becomes more

pronounced in the higher rate experiments, where higher order transient effects result in a violation

of the basic assumption upon which the analysis of optical caustics is made.

An alternative illustration of the same phenomenon is seen in the results of Krishnaswamy

and Rosakis (1990). In this work a "bifocal" caustics arrangement is used to investigate dynamic

crack initiation and growth in AISI 4340 steel. At each time instant during dynamic crack growth

the high speed camera used in the experiment simultaneously records two caustic patterns formed

from two initial curves at different distances from the crack tip. Both caustics are then interpreted

on the basis of the conventional analysis with Kd-dominance. Since both caustics are formed from

points surrounding the tip which lie outside of the near tip three-dimensional zone, the values of

stress intensity factor obtained by bifocal caustics pairs are expected to be identical unless the

assumption of K' dominance is violated. The experimental results show differences in K d values

of up to 40%. This suggests that higher order transient terms of the nature discussed in this paper

should be included in the analysis of optical caustics in order for the method to furnish accurate

values of stress intensity factors.

A long-standing issue of fundamental importance in dynamic fracture research is the connection

between the dynamic fracture toughness and the crack tip velocity. The debate, for the most part,

has centered around the question of uniqueness of a relationship between K d and v. Kobayashi

and Dally (1980), Rosakis, Duffy and Freund (1984), and Zehnder and Rosakis (1989), among

others, provided data sets that seem to indicate that the Ktd - v relation is reasonably viewed

as a material property. On the other hand, the results of Kobayashi and Mall (1978) and Ravi-

Chandar and Knauss (1984), based on photo-elasticity and the method of caustics in transmission

respectively, suggest that there is no such correspondence. While this difference may be attributable

to differences in material characteristics or experimental conditions, the fundamental difficulty of

achieving a well developed stress intensity factor field in transient crack growth experiments may

also be playing a significant role.

Another series of experiments leading to results that have yet to be explained are those reported

by Kalthoff (1983), which seem to indicate that the dynamic fracture toughness could be specimen
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dependent. In this case, as well, it may be possible to attribute the apparent specimen dependence

of K to specimen-dependent differences in the near-tip region. Remarks on such observations are,

of course, speculative at this point, and further study is required to assess the possibilities.

On the basis of some crack propagation experiments in which the optical method of caustics was

used, Takahashi and Arakawa (1978) proposed that the instantaneous value of dynamic fracture

toughness of their material depended on the instantaneous crack tip acceleration. As shown in

this investigation, however, the near-tip stress field expansion involves crack tip acceleration in its

third or higher order terms (see (26), for example). As a result, caustic patterns obtained from

regions where higher order terms are important will exhibit acceleration effects. However, if caustics

from such a region are interpreted on the assumption of Kd-dominance then it would appear that

the instantaneous value of stress intensity factor, and thus of fracture toughness of the material,

depends on the instantaneous acceleration of the crack tip.

The re-examination of the crack tip stress field for elastodynamic crack growth under transient

conditions has led to certain features of the near tip field that have the potential for significantly

altering the crack tip field from the commonly assumed square root singular stress intensity factor

field. Furthermore, a particular data set has been examined in light of the theoretical findings,

with the result that the data are well described by a higher order representation of the transient

crack tip field. These results offer hope of resolving some long-standing paradoxes in the area of

dynamic fracture, and speculation along these lines has been offered in this section. In pursuing

this issue, full field optical techniques such as CGS or photoelasticity naturally are advantageous

because interpretation of data and thus measurement of Kd does not hinge on the assumption of

K/-dominance. For both techniques a higher order transient analysis of the type presented above

can be used to obtain the relevant coefficients as a function of time. On the other hand, it may

be possible to refine the analysis of caustics with the hope that the technique may exhibit the

necessary sensitivity to provide information of the kind needed to asses the importance of higher

order terms in the crack tip field expansion. Given the extraordinary experimental simplicity of

the technique this seems to be a worthwhile task for future research.
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Figure Captions

Fig. I Schematic diagram illustrating the potentially complex dependence of the stress field at a point

near the crack tip on the recent past history of crack speed and stress intensity factor during

transient crack growth.

Fig. 2 Interferograms obtained during rapid crack propagation in impact loaded, three-point-bend

specimens of PMMA. The fringes are level curves of the gradient of the first stress invariant

a(all + a22 )/OX, and the times shown indicate the time elapsed since the onset of crack

growth.

Fig. 3 Comparison of the radial variation of the experimental measurements of Yd(rt, 01, t) as defined

by the left side of (20) with a fit to the expansion appearing as the right side of (20) for data

obtained in transmission mode from one PMMA specimen (PD-11). The discrete points show

the results of measurements, and the dashed curves are the result of a least squares fit to the

data.

Fig. 4 Information on points of constant stress gradient in the xl-direction obtained directly from

the photograph on the left (specimen PD-11) is shown in the form of discrete points on the

right side, and the fringe loops implied by the points match the actual loops on the left. For

purposes of comparison, synthetic fringe patterns constructed from one-term (solid lines) and

six-term (dashed lines) crack tip field expansions are also shown.

Fig. 5 Comparison of the radial variation of the experimental measurements of Zt(r, 01, t) as defined

by the left side of (21) with a fit to the expansion appearing as the right side of (21) for data
obtained in reflection mode from one PMMA specimen (PD-16). The discrete points show the

results of measurements, and the dashed curves are the results of a least squares fit to the

data.

Fig. 6 Time histories of Kd(t) and /k(t), each normalized by its mean value, for the duration of a

particular crack propagation event.

Fig. 7 Functions of crack tip speed appearing in (30) for v = 1/3, as determined by the Broberg crack

propagation solution.

Fig. 8 Dynamic stress intensity factor versus time for fracture initiation and propagation in Homalite-

100 due to sudden application of crack face pressure (Ravi-Chandar and Knauss, 1987). With

reference to the legends, co is the level of crack face pressure achieved after rise time T, and
the crack begins to propagate at constant speed v after elapsed time r from the instant that

loading begins.
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Fig. 1 Schematic diagram illustrating the potentially complex dependence of the stress field at a point

near the crack tip on the recent past history of crack speed and stress intensity factor during
transient crack growth.
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Fig. 4 Information on points of constant stress gradient in the x1-direction obtained directly from

the photograph on the left (specimen PD-1i) is shown in the form of discrete points on the

right side, and the fringe loops implied by the points match the actual loops on the left. For

purposes of comparison, synthetic fringe patterns constructed from one-term (solid lines) and

six-term (dashed lines) crack tip field expansions are also shown.
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